
Formal Modeling and Analysis of
Bluetooth 4.0 Pairing Protocol

David Jia
Stanford University

djia@stanford.edu

Richard Hsu
Stanford University

richhsu@stanford.edu

ABSTRACT
Bluetooth is a wireless technology for exchanging data over
short distances and is built into many of the devices used
in daily life such as smartphones and laptops. Bluetooth
allows communication between paired devices. The pairing
is done through Bluetooth’s pairing protocol known as Sim-
ple Secure Pairing (SSP) which has been established since
Bluetooth 2.1+. Bluetooth security is important because
sensitive and confidential information such as phone conver-
sations, text-based messages, and key strokes on a keyboard
are often communicated through a pairing. So compromising
Bluetooth could potentially compromise user privacy and
confidential information. We employ a formal model to ver-
ify the security properties of the pairing protocol used in
Bluetooth 4.0, the latest iteration of the protocol. Using
our formal Murphi model, we demonstrate and confirm pre-
viously known attacks on Bluetooth that have not yet been
formalized. We then discuss a new attack found by our
model as well as its implications to Bluetooth 4.0 security.
Finally, we discuss and recommend possible fixes that could
be employed to avoid the attacks we have found. Through
this formal modeling we expand on the security verification
of Bluetooth pairing protocol.

1. INTRODUCTION
Bluetooth is a wireless technology that is ubiquitous in many
modern applications. Users rely on it to transfer data be-
tween smartphones, laptops, on-board car systems, and head-
sets. Bluetooth technology also exists in more peripheral
items such as printers, mice, keyboards, and speakers. Be-
cause Bluetooth serves as an underlying systems for so many
communication systems that are used on a daily basis, sensi-
tive and confidential information can often times be passed
through the supposedly secure paired channel. For exam-
ple, a security breach on Bluetooth could potentially lead to
eavesdropping on phone conversations and keylogging pass-
word entries. Thus, we analyze Bluetooth in this paper
through a formal modeling and analysis in hopes of shed-
ding light on its security and providing recommendations to
improve its security where possible.

In this paper, we focus our attentions on the Bluetooth 4.0
Protocol [12], which is the most recent version of the tech-
nology at the time of writing.

2. BLUETOOTH OVERVIEW
Bluetooth is a wireless technology standard used for ex-
changing data over a short distance. It utilizes short-wavelength

radio transmission as the underlying communication channel
and is implemented in devices ranging from hands-free head-
sets to computer peripherals such as a mouse or keyboard.
These devices are fairly ubiquitous today. Some examples
of the data transferred between devices via Bluetooth in-
clude inputs from a wireless keyboard, contacts transferred
between phones, files transferred between computers, and
even patient health data from medical sensors to servers.
Each Bluetooth responder device (such as a laptop) can be
paired with up to seven Bluetooth initiator devices (such as
a keyboard or mouse).

Because of the wide range in the application of Bluetooth,
the security of the Bluetooth communication is vitally im-
portant. The major part of Bluetooth that becomes vulnera-
ble to attackers is the the pairing protocol when two or more
devices first initiate connections with one another. The con-
nection process creates a personal area network and requires
authentication and encryption to remain secure. Since Blue-
tooth 2.1, Secure Simple Pairing (SSP) [11] has been imple-
mented and further improved in subsequent versions leading
to the current version of Bluetooth 4.0 discussed in the cur-
rent paper.

2.1 Secure Simple Pairing Protocol
Bluetooth 4.0 Secure Simple Pairing contains four main as-
sociation models depending on the devices involved:

1. Just Works (JW) When at least one device does not have
display nor input channel. Example: wireless headset.

2. Numeric Comparison (NC) When both devices have a dis-
play and at least one has a binary input channel for a yes
or no response. Example: pairing between smartphones.

3. Passkey Entry (PE) When one device has an input chan-
nel but no display and the other device has a display but
no input channel. Example: Wireless keyboard.

4. Out of Band (OoB) When both devices support a com-
mon additional wireless or wired communication tech-
nology for purpose of device discovery or cryptographic
channels. Example: Near Field Communication (NFC).

The SSP protocol is completed in five phases. SSP follows
the same steps in these five phases for all four association
models with the exception of phase 2. The process of pairing
through the five phases is described in detail below.

1



Note that in our analysis, we will only consider the JW and
NC models since the PE model is just a special case of the
NC model and OoB’s security is dependent on the security
of an out of band cryptographic channel.

2.1.1 Phase I: Public Key Exchange
In this phase, Elliptic Curve Diffie-Hellamn (ECDH) key
exchange [14] is completed by the initiating (Device A) and
non-initiating, or responding device (Device B). Both de-
vices generate a public-private key pair using ECDH. The
public key of each device is sent to the other device. Note
that according to the official Bluetooth Specifications, this
key pair does not need to be generated each time a pairing
occurs. Each device may discard its key pair and generate
a new one at any time, but this is not a requirement.

2.1.2 Phase II: Authentication Stage 1
In this stage, each of the four associated models has a dif-
ferent, but relatively similar authentication process. In each
of the associated models, both devices generate a random
nonce, Na and Nb, respectively for Device A and Device B.
Device B, the non-initiating device then computes a com-
mitment value Cb = f1(PKb, PKa, Nb, 0), where PKa is the
public key for Device A and PKb is the public key for Device
B, and f1 is SHA256 dependent one-way hash-function that
generates a 128-bit value with the given input.

After Cb is generated, it along with Nb is sent to Device A.
Device A also sends Na to Device B. Next, Device A com-
putes the same commitment value Ca = f1(PKb, PKa, Nb, 0)
and compares it with Cb. If they do not equal, then the pair-
ing process is aborted. If they are equal, then the process
proceeds, and diverges for each of the four associated models
as follows until the end of Phase 2.

1. Just Works (JW) In this associated model, since one of
the devices can neither display nor input values, Phase 2
ends here and moves on to Phase 3.

2. Numeric Comparison (NC) In this associated model, Phase
2 goes on to generate two verification codes to be dis-
played by the user. Each device x generates a six-digit
verification code Vx = g(PKa, PKb, Na, Nb), and dis-
plays it to the user. The user can then determine if
Va = Vb and confirm the pairing and moves on to Phase
3.

3. Passkey Entry (PE) In PE, the two devices decide upon a
secret value, created by the users of the devices. If we are
pairing two devices that both do not have screens, then
the values are agreed upon by the user. If one device
has a display, then the device generates a random value,
which is shown on the device’s display to be inputted into
the other (input) device. This shared secret is turned into
an n-bit number (n depends on the length of the shared
secret). Let the i-th bit for device x be denoted as rxi .
Since the secret is shared, the assumption is that all rai =
rbi for all i. Then for each i, a commitment value, Cxi =
f1(PKb, PKa, Nxi , rxi) is generated for device x. The
twenty commitment values are sent to the other device
and compared. If any commitment values do not equal,
then we abort the process. Otherwise, we move on to
Phase 3.

4. Out of Band (OoB) In OoB, after the commitment stage
described completes, a shared secret comparison is done
similar to the PE mode, except the external communi-
cation is complete through an external channel such as
NFC.

2.1.3 Phase III: Authentication Stage 2
Phase 3 confirms that both devices have successfully com-
pleted the exchange during pairing. Device A generates
exchange codes Ea = f3(DHKey,Na, Nb, rb, IOcapA,A,B)
and Device B generates a corresponding exchange code Eb =
f3(DHKey,Nb, Na, ra, IOcapB,B,A), where DHKey is the
Diffie-Hellman key created in Phase 1. Both are sent to the
other device. Each device then computes the exchange code
for the other device and verifies that it is the same.

2.1.4 Phase IV: Link Key Calculation
A Link Key is calculated by both devices by computing
LK = f2(DHkey,NA, NB , “btlk”, BDADDRA , BDADDRB ).
Since both devices have been authenticated at this stage, the
link key generated by both devices should be equal. This
link key will be used in phase 5.

2.1.5 Phase V: LMP Authentication and Encryption
Phase 5 is the actual communication between the paired de-
vices. The Link Manager Protocol (the controller that han-
dles authentication and encryption) utilizes the link key de-
veloped in Phase 4 to perform authentication and encryption
during the communication between the paired devices. For
example if a device wants to verify a paired device it can per-
form a challenge-response by sending a nonce to the claimant
device in which it generates a value and sends back to the
verifier who can then verify the identity of the claimant de-
vice.

3. RELATED WORKS
Because of Bluetooth’s prevalence and the emergence of mo-
bile technology, several related works have been done in an
effort to analyze the security of Bluetooth. Most recently,
in 2010, Phan and Mingard [15] analyzed SSP in Bluetooth
4.0 in “Analyzing the Secure Simple Pairing in Bluetooth
v4.0” which hand modeled and analyzed Bluetooth 4.0 and
described three Man in the Middle (MitM) attacks for the
NC and PE modes. In their 2007 paper, “Formal Analy-
sis of Authentication in Bluetooth Device Pairing”, Chang
and Shmatikov [2] modeled Bluetooth 2.0 using ProVerif
cryptographic protocol verifier and verified a known guess-
ing attack and discovered a potential vulnerability which
produces concurrent execution of authentication. Similarly,
Haataja and Toivanen [6] discussed in “Practical Man-in-
the-Middle Attacks Against Bluetooth Secure Simple Pair-
ing” two more MitM attacks on Bluetooth 2.0 handsets and
hand-free devices as well as modeled a vulnerability on the
OoB mode given that the attacker has visual contact to the
victim devices. Other papers are more general and informa-
tive, presenting a high-level view of the Bluetooth protocol,
or suggesting potential vulnerabilities and risks associated
with Bluetooth without providing formal analysis or proof.

While these papers present a good starting point for model-
ing Bluetooth 4.0, they are insufficient. First, many of the
analysis of Bluetooth are either not formal or performed on

2



outdated versions, such as v2.x [17, 5, 10, 9]. The most
up-to-date analysis of Bluetooth 4.0 by Phan and Mingard
[15] encapsulated a non-formal analysis of the NC and PE
modes without formal modeling with a cryptographical tool
such as Murphi.

In our paper, we perform a formal analysis and modeling
(with Murphi) of Bluetooth 4.0, which has several improved
and modified security features from its predecessors. We
first confirm the findings of other papers, such as that of
Phan and Mingard, by modeling MitM attacks on Bluetooth
in JW and NC modes using Murphi. We then describe a
novel attack on the NC association model found by our for-
mal Murphi modeling.

4. MURPHI MODEL CHECKER
We use the Murphi Model Checker [1] in order to model the
states of the Bluetooth 4.0 pairing protocol. The Murphi
Model Checker allows us to model the different states pos-
sible in the protocol and be able to model the packets be-
ing sent between device parties while modeling an adversary
that has certain access rights to these packets depending on
the protocol mode and encryption methods of the packets.
We begin by modeling two devices being paired and then
from there model multiple devices connecting to a single
parent device. Bluetooth only allows at most seven devices
paired to a single responder device, therefore scaling can be
done in a natural way and we can model larger ecosystems of
Bluetooth devices given the right computational resources.

5. BLUETOOTH MODELING
In order to formally model the Bluetooth 4.0 Pairing Pro-
tocols we utilize the Murphi modeling tool. In Murphi, the
variables represent the values being passed throughout the
communication of the pairing as well as the hash values be-
ing created by the devices. The states are modeled by the
state variables representing the actual states during the pair-
ing protocol as described by the Bluetooth 4.0 core speci-
fication files. We model transitions between steps of each
phase as transitions in our state variables. We model the
intruder as being a general active attacker adhering to the
Dolev-Yao model [4]. In conjunction with the possible state
executions, the Murphi model checker will explore all pos-
sible states and verify our security invariants for plausible
executions. Our overall model consists of roughly 1000 lines
of Murphi code. Please note that for the sake of conciseness,
we refrain from showing all of our code in this paper and in-
stead include the entire codebase in separate repository. In
this paper, for purposes of understanding our formalization,
we will present a high level overview of our model.

5.1 Design Choices
We model our pairing protocol by defining separate mod-
els for the different device roles in SSP. The major models
are the initiator–the device that begins the pairing protocol,
and the responder–the device that with which the initiator is
being paired. The message model is utilized to describe the
transitions throughout the various phases of the pairing pro-
tocol. In general only phases prior to and up until phase IV
are modeled using Murphi rulesets because phase V simply
involves encryption and the start of message transmission af-
ter the Link Key is calculated in phase IV. After phase III,

the link key generation can be done without a transition,
given all prior information from phases I to III. Phase IV
is represented in our model by denoting two paired devices
as “having” a link key by the linkKey boolean variable of
initiators and responders (as we will discuss below). Thus,
there is no loss of generality of our model because phase IV
is the last phase in which any network communication oc-
curs and the final execution stage that verifies the pairing is
complete.

5.2 Modeling Protocol Entities
5.2.1 Initiators

In the initiator model, there are seven distinct states defined
by the enumeration InitiatorStates. Three states, I_SLEEP,
I_SENT_KEY, and I_PHASEONE_DONE describe the initiator’s
interactions in phase I of the Bluetooth SSP protocol. The
states I_WAIT_ONCE, I_NC_VERIF_SET, and I_PHASETWO_DONE

model the initiator’s interactions in phase II. I_WAIT_EVALUE
and I_PAIRED model the initiator’s interactions in phase III
and IV.

Each initiator record holds the current state the initiator
is in, the responder with which the initiator is trying pair,
and a set of saved variables passed from the responder to
the initiator. Finally, the linkKey boolean variable denotes
whether or not the link key was generated.

Initiator: record

state: InitiatorStates;

responder: AgentId;

-- recieved public key in phase 1

responder_pk: AgentId;

-- recieved rb value if any

responder_r: AgentId;

-- recieved nonce in phase 2

responder_n: AgentId;

-- received commitment value

responder_c: CValue;

-- link key of the pairing generated

linkKey: boolean;

-- verification token generated NC Phase 3

vValue: VValue;

end;

5.2.2 Responder
In the responder model there are six distinct states de-
fined by the enumeration ResponderStates. The first two
states R_SLEEP and R_PHASEONE_DONE describe the respon-
der’s interaction in Phase I of the protocol. R_WAIT_NONCE,
R_NC_VERIF_SET, and R_PHASETWO_DONE model the respon-
der’s interactions in phase II. Finally R_PAIRED models the
responder’s interactions in phase III and IV.

Each responder record holds the current state of each pair-
ing, which saves information between a pairing agent and
itself, and contains the information received over the net-
work such as the nonce and public key. Finally, the linkKey
states whether or not the link key was generated.

Pairing: record

state: ResponderStates;

3



initiator: AgentId;

-- recieved public key in phase 1

initiator_pk: AgentId;

-- received random value

initiator_r: AgentId;

-- recieved nonce in phase 2

initiator_n: AgentId;

-- received commitment value

initiator_c: CValue;

-- link key of the pairing

linkKey: boolean;

-- vvalue of the pairing

vValue: VValue;

end;

Responder: record

pairings: multiset[MaxInitiators] of Pairing;

end;

5.3 Modeling Messages
There are 4 major message types during the protocol pairing:

1. Public key messages (M_PublicKey) where the device sends
its public key in the clear.

2. Nonce messages (M_Nonce) where the device sends a ran-
dom nonce in the clear.

3. Commitment value message (M_CommitValue) where the
device generates a commitment hash value based off the
public keys and nonces used.

4. Exchange verification message (M_ExchangeVerif) where
the device generates an exchange hash value based on the
public keys, nonces, a random value, their IO capabilities,
and the device addresses in use.

Given these states, the Message record is defined as follows:

Message : record

-- message type

mType: MessageType;

-- source of message

source: AgentId;

-- intended destination of message

dest: AgentId;

-- nonce from source to dest

nonce: AgentId;

-- public key

publickey: AgentId;

-- commit value (Phase 2)

cValue: CValue;

-- exchange verification value (Phase 3)

eValue: EValue;

end;

Each message contains the values exchanged throughout the
protocol as described in our overview of Bluetooth. Since the
Murphi model checker do not support hash functions, we

simulate it by assuming that the cryptographic hash func-
tions are collision resistant, therefore in order to generate
the same hash value, the inputs must be equal. Thus we
can safely model hash values as a record of their inputs, and
when checking that the hash values are equal, our model
simply verifies that all input values are equal as well. Below
we present the commitment value, the exchange verification
value, and the verification code value which are records of
all their inputs in our model.

-- Commitment Value

CValue : record

-- when created - pk of sender

pk_send: AgentId;

-- when created - pk of receiver

pk_recv: AgentId;

-- when created - nonce of sender

n_send: AgentId;

end;

-- Exchange Verification Value

EValue : record

-- when created - pk of sender

pk_send: AgentId;

-- when created - pk of receiver

pk_recv: AgentId;

-- when created - nonce of sender

n_send: AgentId;

-- when created - nonce of receiver

n_recv: AgentId;

-- when created

-- random value generated by the receiver

r_recv: AgentId;

end;

-- Verification Value

VValue : record

-- public key of initiator

pk_initiator: AgentId;

-- public key of responder

pk_responder: AgentId;

-- nonce sent by initiator

n_initiator: AgentId;

-- nonce sent by responder

n_responder: AgentId;

end;

5.4 Modeling Protocol Transitions
Transitions in the states of the initiator and responder are
modeled using Murphi’s rulesets. Each ruleset includes a
preposition, which if satisfied, allows the programmer to de-
fine the next state. We model each state transition based
on the transitions of the SSP protocol.

5.4.1 Initiator and Responder Transitions
As we can see in Fig 1, an initiator in the I_SLEEP state
starts SSP by sending its public key to an Agent, which can
be a responder or an intruder. Another ruleset is created
to check for messages sent to each responder, in which a
responder will reply with its own public key to the source,
which could be the initiator or an intruder.

4



This process continues into phase II, in which we discuss the
model for the JW association model. The other association
models are similar enough that we will not discuss them to
reduce redundancy. Rulesets are created in which the initia-
tor and responder check the network for messages addressed
to it that include the nonce and commitment value. These
values are checked against received values by the initiator,
and if they are confirmed, the protocol continues, otherwise,
the message is removed from the network, and the branch of
the Murphi search tree stops. We model the checking of the
hashed values by checking that all input values are the same,
if any are different then the hash would be different. In a
similar fashion, phase III is modeled using rulesets for both
initiator and responder in which messages with Exchange
Verification values are sent across the network and verified
by both initiator and responder. If everything verified, we
set the initiator state to I_PAIRED and the responder state
to R_PAIRED. Finally the linkKey boolean value is set to true
on both the initiator and the responder to represent that the
linkKey as been exchanged.

5.5 Modeling An Adversary
The adversarial model will follow the Dolev-Yao intruder
model [4] in which the adversary is given the power to inter-
cept, read, store, modify, and forward messages of its choos-
ing. The main adversarial models present against Bluetooth
are Man-in-the-Middle (MitM) attacks where an adversary
is between the communications of two Bluetooth devices.
By using the Dole-Yao mode, we can enumerate all states of
interest [4].

5.5.1 Adversary Model
An intruder can intercept messages by taking messages from
the network and adding it to its multiset of messages. The
intruder record also has an array of linkKeys to represent
the initiators and responders of which the intruder has the
linkKey. The array of booleans pk and nonce represent
whether the intruder has the public key and nonce from
a certain agent. The sent_pk and sent_n array of booleans
represent whether the intruder has sent its own public key
and nonce to a certain agent.

Intruder: record

messages: multiset[MaxKnowledge] of Message;

linkKeys: array[AgentId] of boolean;

-- Do we know their PK

pk: array[AgentId] of boolean;

-- Did we send our PK to them

sent_pk: array[AgentId] of boolean;

-- Do we know their nonce

nonce: array[AgentId] of boolean;

-- Did we send our nonce

sent_n: array[AgentId] of boolean;

end;

5.5.2 Intercept Messages
The adversarial model against our pairing protocol is mainly
a Man-in-the-Middle (MitM) attack in which the adversary
has control of the communication channel between the two
users. In this case the intruder has three main courses of
action: (i) intercept messages, (ii) pick a stored message

and forward it along without modification, (iii) or modify
the messages before forwarding it.

-- intruder i intercepts messages

ruleset i: IntruderId do

choose k: net do

rule 100 ‘‘intruder intercepts messages’’

-- Pick a msg from network that is not

-- intended for the intruder

!ismember (net[k].source, IntruderId)

==>

begin

-- the message to intercept

alias msg: net[k] do

-- If we haven’t seen the message, then add

-- to intruder’s messages

if multisetcount(l:messages,

int[i].messages[l] = msg

) = 0 then

multisetadd (msg, int[i].messages);

end;

end;

multisetremove (k, net);

end;

end;

end;

5.5.3 Forward without Modifications
In this model, if an intruder sees a message on the network
that has never been seen, then the intruder records the mes-
sage. The intruder later forwards this message to any pos-
sible agent, which is modeled through different branches of
Murphi based on different values selected for the intruder
rulesets. In most cases, the source is changed, otherwise the
intruder would act as a passive network, in which case we
do not actually need the adversary to forward the message.
In this attack, an initiator pairs with an intruder using the
public key of a responder.

Since the intruder simply forwards messages without chang-
ing the public keys, it cannot decode any messages sent be-
tween the initiator and responder once they’re paired. How-
ever, since the initiator and responder are both paired with
the intruder, the intruder can perform a denial-of-service
attack by simply not forwarding the messages. This will
clearly violate the initiator and responder authenticity in-
variant, since both think they are paired with the other, but
are actually paired with an intruder.

-- intruder i sends recorded message

-- without modification

ruleset i: IntruderId do

choose j: int[i].messages do

ruleset k: AgentId do

rule 100 ‘‘intruder sends recorded message’’

-- Pick a message stored by an intruder

!ismember (k, IntruderId) &

!(int[i].messages[j].source = k) &

5



multisetcount (l:net, true) < NetworkSize

==>

-- Set destination to some AgentId,

-- source to us, and send it out

-- without further modifications

var

outM: Message;

begin

undefine outM;

outM := int[i].messages[j];

outM.source := i;

outM.dest := k;

multisetadd (outM, net);

end;

end;

end;

end;

5.5.4 Modify and Forward
In this adversary model, the intruder can send any mes-
sage over the communication channel to the other devices.
When the intruder receives a message from an initiator, the
intruder modifies the public key to its own public key before
forwarding it to the intended responder. Similarly, when the
intended responder sends its public key to the intruder, the
intruder replaces it with the intruder’s own public key before
forwarding it to the initiator. In this way, both initiator and
responder will be paired with the intruder, but unlike the
“intercept and forward” model above, the intruder’s pub-
lic key is used. This means that the intruder can decode
all messages between the initiator and responder, and con-
tains a link key with both the initiator and responder. This
model causes both the authentication and secrecy invariants
for both initiator and responder to fail since not only are ini-
tiator and responder paired with the intruder, but link keys
are shared with the intruder. Note that this MitM attack
only occurs in the JW association models since in NC and
PK, users need to confirm the verification code before the
protocol can continue.

-- intruder i modifies messages

-- and sends to network

ruleset i: IntruderId do

choose j: int[i].messages do

ruleset k: AgentId do

rule 100 ‘‘intruder sends recorded

message with its own info’’

-- Pick a message stored by an intruder

!ismember (k, IntruderId) &

!(int[i].messages[j].source = k) &

multisetcount (l:net, true) < NetworkSize

==>

var

outM: Message;

begin

undefine outM;

-- Modify the message depending on

-- the message type:

-- M_PublicKey, M_CommitValue,

-- M_Nonce, or M_ExchangeVerif

-- Send recorded message with modifications

multisetadd (outM, net);

end;

end;

end;

end;

5.6 Security Properties and Invariants
In order to verify that the Bluetooth 4.0 Pairing Protocol is
secure we must translate the security properties to invari-
ants for the Murphi model. The invariants will be check at
every state being explored by the model checker, and if any
invariants are violated, Murphi will return with the error.
The following subsections discuss the security properties as
well as the invariants we implement.

5.6.1 Authentication
Bluetooth 4.0 provides authentication by providing commit-
ment codes, verification codes to users, and finally an ex-
change code. All three of these are done in phases 2 and 3
or the authentication steps in SSP. These steps are used to
authenticate the two devices being paired. We define two
authenticity invariants in our model such that no initiator
is paired with an intruder and no responder is paired with
an intruder if either of them are in the final paired states
I_PAIRED and R_PAIRED. The invariants are as follows:

-- initiator authenticity

invariant ‘‘initiator correctly paired with

good responder’’

forall i: InitiatorId do

ini[i].state = I_PAIRED

->

!ismember(ini[i].responder, IntruderId)

end;

-- responder authenticity

invariant ‘‘responders correctly paired with

good initiator’’

forall i: ResponderId do

multisetcount(l:res[i].pairings,

(res[i].pairings[l].state = R_PAIRED &

ismember(res[i].pairings[l].initiator,

IntruderId))

) = 0

end;

5.6.2 Confidentiality
Confidentiality in Bluetooth 4.0 is provided through the en-
cryption of the communication channel once the link key is
established. This link key is refreshed periodically to ensure
the confidentiality of communication. However, confiden-
tiality is only upheld once the link key is established, all
other communication before this is in the clear. As a conse-
quence, any eavesdropper can access the information being
passed between the pairing devices. However, the informa-
tion being passed is usually used for verification processes
and therefore an adversary should not be able to gain all
the information required to generate the paired link key. We
thus represent this in our model by verifying that the adver-
sary does not gain the link key of any user at any Murphi
state. Once the pairing is complete, if the adversary has the
link key, then the system has been compromised. Thus, we
do not have to worry about the state of confidentiality after

6



the generation of the link key as we assume all cryptographic
primitives such as encryption used in the communication are
secure. The invariants in our model therefore check that
once the initiators and responders are in the paired states
that no intruder owns any of the honest agents’ link key.

-- initiator confidentiality

invariant ‘‘initiator link key is secret’’

forall i: InitiatorId do

ini[i].state = I_PAIRED &

ini[i].linkKey = true

->

forall j: IntruderId do

int[j].linkKeys[i] = false

end

end;

-- responder confidentiality

invariant ‘‘responder link key is secret’’

forall j: IntruderId do

forall i: ResponderId do

multisetcount(l:res[i].pairings,

(res[i].pairings[l].initiator = j &

res[i].pairings[l].state = R_PAIRED &

res[i].pairings[l].linkKey = true &

int[j].linkKeys[i] = true)

) = 0

end

end;

5.6.3 Intention Preservation
Intention preservation is very similar to authenticity. How-
ever, the major difference is the intention of the initial pair-
ing. The intention preservation invariant holds if and only
if an initiator is paired with who the initiator originally in-
tended to pair with, even if it’s an intruder. For example
if an initiator intends to pair with an intruder’s device then
intention preservation, unlike authenticity, still holds since
at the end of the pairing the initiator is paired with the
intruder’s device. In order to verify this property we im-
plement two invariants which check from the initiator’s side
and the responder’s side of the protocol.

-- initiator intention preservation

-- every initiator device is paired with who

-- the device originally thought it

-- would be paired with

invariant ‘‘initiator intention

preservation pairing’’

forall i: InitiatorId do

ini[i].state = I_PAIRED &

ini[i].linkKey = true

->

multisetcount(l:gpr,

(gpr[l].initiator = i &

pr[l].responder = ini[i].responder))

>= 1

end;

-- responder intention preservation

-- every responder device is paired with who

-- the device originally thought it

-- would be paired with

invariant ‘‘responder intention

preservation pairing’’

forall i: ResponderId do

multisetcount(j:res[i].pairings,

res[i].pairings[j].state = R_PAIRED) >=

1

->

multisetcount(l:gpr,

(multisetcount(j:res[i].pairings,

res[i].pairings[j].state = R_PAIRED &

gpr[l].responder = i &

res[i].pairings[j].initiator

= gpr[l].initiator

) >= 1)

) >= 1

end;

5.7 Protocol Initial State
Our model begins with all states being cleared and the ini-
tiator and the responder both in the I_SLEEP and R_SLEEP

states, respectively. All network and pairings are cleared,
and the intruder only knows the information for itself and
nothing else. The transition rules will then be be fired off by
the Murphi model checker that push these states to subse-
quent states, and the validity checks will only continue along
plausible paths of execution. From this initial state, since
the intruder does not have any information in the beginning
it must learn the information through our adversary model,
which we presented earlier.

6. ANALYSIS AND RESULTS
After running our Murphi model against our security invari-
ants, our model discovered three major attacks, two of which
have been discussed in previous works [15] and a novel at-
tack which we will describe in the subsequent sections. The
table in Figure 2 is a table of our model’s state exploration
results on finding these attacks. We subsequently increase
the number of agents in our model and find that we can-
not increase passed 2 initiators otherwise our state space
increases tremendously that our systems do not have the
computational power to complete the model verification. In
our analysis, we used an Intel i7 quad 2.8Ghz 8GB RAM
server machine.

6.1 Just Works Attack
In the Bluetooth 4.0 protocol using the JW association model
our Murphi model verified an existing known MitM attack.
A figure of this attack is diagrammed in Figure 3. In this
attack the intruder intercepts a message from an initiator
that was intended for an honest responder. The intruder
then modifies the message with its own public key and sends
this to the responder. The responder, not knowing that the
intruder is initiating the pairing will respond back with its
own public key in the exchange. The intruder then modifies
this message and sends it to the initiator thus completing
the public key exchange with both initiator and responder.
From here the protocol continues as normal but since the JW
association model does not have a verification check as in the
NC model there is no detection of the MitM attack. There-

7



fore even though the responder and the initiator have dif-
ferent Diffie-Hellman keys, the pairing will still occur. The
intruder in the end has thus gained full control over the
connection and can read everything that the initiator and
responder send to each other.

Our formal modeling found this attack which broke the au-
thenticity, confidentiality, and intention preservation invari-
ants. This means that in the JW association model an in-
truder has a communication pairing with both devices, has
individual link keys for the individual pairings, as well as
broke the intention preservation by intercepting and forcing
both devices to pair with itself.

6.2 Numeric Comparison Attack I:
The Impersonator

In the last section, we saw that the JW association model
was susceptible to MitM attacks, which is one motivation
for the NC association model. In the NC model, the users
of the devices is presented with a 6-digit verification codes
to verify the connection. Thus when the intruder E mod-
ifies the messages and exchanges its own public key PKE

with both devices, the verification codes would be VA =
g(PKA, PKE , NA, NE) and VB = g(PKE , PKB , NE , NB)
on device A and B respectively. The users would only see
Device A which shows Va and Device B which shows Vb.
Since we assume that g is a secure collision resistant hash
function, Va 6= Vb because the inputs are different. Thus a
prudent users would cancel the pairing and the MitM attack
would be avoided. It is important to note that if there is user
error involved and the users accept the verification codes de-
spite the verification code displayed being different, then the
MitM attack would succeed. Therefore the NC association
model should protect against the MitM attack. However, as
we will see, our model demonstrates that the NC model is
in fact not secure from all MitM attacks.

To understand the “Impersonator” MitM attack, it is im-
portant to note that there are not any proper authentica-
tion checks to guarantee that a responder device should in
fact be trusted. The SSP protocol relies on the built in
exchanges to confirm a pairing, but does not make any ex-
tent to actually verify the identity and trustworthiness of
the devices. This being said, our model discovered an MitM
Impersonator attack in which the intruder impersonates an
honest responder, and in turn tricks an honest initiator into
pairing with it.

To motivate this attack we first discuss a real-world sce-
nario. In our example, an adversary takes a rental car and
replaces the display with its adversarial device or modifies
the car in such a way that the device appears to be the
actual on-board device. Now, when an honest user enters
the car, they are tricked into believing that the device is
an honest device when in fact it is an intruder. This sce-
nario is similar to an ATM thief who places an external
card reader over the actual card reader, tricking unsuspect-
ing users into swiping their card and thereby compromising
confidential data. This attack thus accomplishes an imper-
sonation attack in which the user is tricked into forcing a
pairing with the adversary. As the pairing proceeds, it is im-
portant to note that the user now sees the display of Device
A as well as the impersonated device E,and thus the veri-

fication codes would be VA = g(PKA, PKE , NA, NE)) and
VE = g(PKE , PKA, NA, NE). Therefore the unsuspecting
user will confirm the pairing and be paired with the intruder
device. At this point the honest device responder does not
need to be in the picture. However, if the intruder’s device
doesn’t have access to certain things such as the on-board
features, the intruder could optionally create a connection
with the honest device responder and continue the imper-
sonator This attack is illustrated in Figure 4.

Our formal modeling verified the existence of this attack
which breaks the authenticity and confidentiality invariants,
but not the intention preservation invariant. Thus the in-
truder pairs with the honest devices and knows the link key
of the initiator and possible responder. The intention preser-
vation invariant does not fail because the initiator intended
to pair with the intruder device since the intruder was im-
personating an honest responder.

6.3 Numeric Comparison Attack II:
The Proxy

In the NC association model, we already know a MitM at-
tack exists. Another novel attack is discovered by our Mur-
phi model that relies on a compromise of the communication
channel between two honest paired devices. The attack is
diagrammed in Figure 5, and we like to call a “Proxy” MitM
attack. The attack consists of an intruder that simply for-
wards messages between an honest initiator and responder
without modifications, thereby acting as a proxy. Once the
pairing is made, although the Proxy intruder cannot eaves-
drop any of the messages, it can perform a DoS attack by
simply not forward messages along.

The intruder sets up a communication channel such that
the honest responder sends its messages destined for the in-
truder device rather than the initiator device. In the begin-
ning the initiator sends its public key destined for Device B.
However, the intruder intercepts this message and drops the
packet from the network. Although the Bluetooth protocol
is a broadcast protocol we are assuming a strong adversary
model and therefore we assume that the intruder has some
power over the network to drop packets or at least disrupt
the communication such that the Device B would not inter-
pret the message sent from Device A. After intercepting the
message from Device A, the intruder changes the source of
the packet and forwards it with no other modifications to
Device B. Device B then responds with its public key but
with the message destined for the intruder. The intruder
in turn forwards this message to Device A and the proto-
col follows as standard but with the intruder making sure
that Device B believes that honest initiator’s address is the
intruder’s address.

Our formal modeling discovered the existence of this attack
which only breaks authenticity for the responder. Confiden-
tiality and intention preservation invariants are held because
the pairing still occurs between Device A and Device B, and
the link key is secret since the intruder has not compromised
the public key exchange. Authenticity fails because Device
B is actually communicating with the intruder rather than
Device A, this means that Device B requires the intruder in
order to complete the communication with Device A. At this
point the intruder controls Device B’s communication chan-

8



nels. Although this is not as critical as the other verified
attacks, it is significant because the Bluetooth SSP proto-
col should ensure that not only are devices paired with the
devices they originally intended to be pair with, but the ini-
tiator and responder should also be communicating directly
without a MitM attack such as this one.

7. DISCUSSION AND FIXES
We have discussed the discovered attacks found by our Mur-
phi model. In the following sections, we discuss their impli-
cations and security risks as well as potential recommen-
dations for fixes to better secure the Bluetooth 4.0 Pairing
Protocol.

7.1 Just Works Attack
The JW association model is known to not provide protec-
tion against MitM attacks and is only present to allow for
convenience for devices such as mice, keyboard, or headsets.
For other devices, the NC association model is recommended
for pairing, such as for smartphones or laptops to help miti-
gate MitM attacks. Also for the general usages of Bluetooth,
the range of the protocol is between 5-30 meters and there-
fore an adversary needs to be fairly close physically in order
to mount the attack. In this case, the attack could be im-
practical.

7.2 Numeric Comparison Attack I:
The Impersonator

The NC association model is presented by the Core Blue-
tooth Specifications [12] to protect against MitM attacks
with high probability. However, our model verifies the pre-
viously discovered attack by Phan and Mingard [15] of the
Impersonator MitM attack. This attack is a very critical
compromise of Bluetooth SSP because the NC association
model is presumed to protect against MitM attacks.

Such an attack is difficult to fix, especially for a protocol that
attempts to be extremely energy efficient and lightweight.
One way to protect against such MitM attacks is to estab-
lish a trusted authority similar to the Certificate Authori-
ties that are used on the Internet. Even then impersonation
is difficult to defend against because there are many attack
vectors and self signing that can exist such as impersonating
trusted entities in the verification process. Also, the Blue-
tooth device would then need to shave an eternal communi-
cation channel in order to proper verify, which could signifi-
cantly decrease its efficiency and increase energy usage. Fur-
thermore, having a centralized trust authority would mean
that device must be connected to the Internet in order to
be paired, which in many cases is impractical and possibly
defeat the purpose of the ad-hoc feature of Bluetooth.

These attacks would be mostly successful in situations when
a user must pair with a device that he or she does not own.
Because Bluetooth does not have centralized trust such as
web Certificate Authorities, SSP cannot guarantee trust of
devices. Most users and Bluetooth vendors do not consider
this because they expect most usage to be between devices
actually owned by the user. However, as we have demon-
strated in the car rental example, such assumptions about
trust are not always true.

7.3 Numeric Comparison Attack II:
The Proxy

Although the Impersonator attack is more critical than the
Proxy attack in the NC model, the Proxy MitM is still sig-
nificant since an honest device believes its communication is
being sent to another honest device through a trusted net-
work when in fact it is not. Although the communication
will be encrypted in this scenario, the responder device re-
lies on the intruder device to communicate properly with the
other device. Giving an intruder such control can lead to de-
nial of service attacks and allow them an easier interface to
possible eavesdropping on the traffic between the two users.
Similar to the other attacks on the protocol, the intruder
must have their device within range for this to be plausible.

Like the NC Impersonator MitM attack, the NC Proxy MitM
attack is difficult to fix because of the inherent mutability of
the underlying networking paradigm. To help us find a fix
for this adversary, we need to create a way to make Blue-
tooth addresses immutable. If we can make these addresses
immutable, then an adversary would not be able to spoof its
address to trick an honest initiator or responder to complete
the pairing through it. However, it isn’t always clear exactly
how this can be done, and it also depends on the underlying
hardware and radio frequency generations. Finding a fix for
this attack could be possible lead-ins for future work.

8. CONCLUSIONS
Since its conception in 1994, Bluetooth has quickly risen in
popularity and its use and applications have become wide-
spread. As a consequence, its ubiquitous nature has made
Bluetooth’s SSP security an important problem.

In our paper, using the Dolev-Yao [4] adversarial model, we
presented and discussed a formal model using Murphi to
exhaustively verify the security of Bluetooth’s SSP. In our
findings, we verify two previously known attacks on Blue-
tooth [15]. In the JW association model, a MitM attack is
found where an attacker can easily pair with both initiator
and responder, thereby allowing it to eavesdrop and modify
any messages sent across the paired devices. Bluetooth de-
signed the NC association model specifically to combat this
MitM attack. However, as we have seen, their efforts fall
short of preventing all MitM attacks from Bluetooth SSP.
In the NC association model, we verified the Impersonator
MitM attack informally reasoned by Phan and Mingard [15].

In addition, we have found a novel attack on Bluetooth’s
supposedly secure NC association model: the Proxy MitM
attack. In this attack, an adversary allows an initiator to
pair with a responder by intercepting the key exchange mes-
sages, but forwarding these messages along without modifi-
cation, except for the source. As a result, at the completion
of the pairing process, although the intruder does not have
the link key, it has successfully forced the initiator and re-
sponder to communicate through the intruder as a proxy. In
this way, the intruder compromises the authenticity of the
Bluetooth SSP security. Because the adversary now controls
all communication between the initiator and responder, suc-
cessful communication between the initiator and responder
depends solely on the intruder’s likelihood to proxy mes-
sages between them. Thus, the intruder can easily perform

9



a denial of service attack.

Through our formal analysis, we hope to shed light on Blue-
tooth SSP and to further advance the efforts made to ensure
its security.

9. REFERENCES
[1] J. Bau and J. Mitchell. Security modeling and

analysis. Security Privacy, IEEE, 9(3):18–25,
May-June.

[2] R. Chang and V. Shmatikov. Formal analysis of
authentication in bluetooth device pairing. In
Proceedings of LICS/ICALP workshop on foundations
of computer security and automated reasoning for
security protocol analysis (FCS-ARSPA â07), July.

[3] W. Diffie, P. C. Van Oorschot, and M. J. Wiener.
Authentication and authenticated key exchanges. Des.
Codes Cryptography, 2(2):107–125, June 1992.

[4] D. Dolev and A. C. Yao. On the security of public key
protocols. Information Theory, IEEE Transactions,
29(2):198–208, March.

[5] J. P. Dunning. Taming the blue beast: A survey of
bluetooth- based threats. Security & Privacy, IEEE,
2010.

[6] K. Haataja and P. Toivanen. Practical
man-in-the-middle attacks against bluetooth secure
simple pairing. In Wireless Communications,
Networking and Mobile Computing, 2008. WiCOM 08.
4th International Conference on, pages 1–5, October
2008.

[7] S. Just, M. & Vaudenay. Authenticated multi-party
key agreement. In In Advances in Cryptology,
Asiacrypt 96, LNCS 1163, pages 36–49, 1996.

[8] C. Kuo, J. Walker, and A. Perrig. Low-cost
manufacturing, usability, and security: An analysis of
bluetooth simple pairing and wi-fi protected setup. In
Proceedings of International Conference on Usable
Security (USEC 07), pages 325–340, 2007.

[9] A. Lindell. Attacks on password pairing in bluetooth
v2.1. In CSI â08, Maryland, 2008.

[10] A. Lindell. Bluetooth v2.1â a new security
infrastructure and new vulnerabilities. In BlackHat
Briefings, Las Vegas., 2008.

[11] Bluetooth, SIG. Bluetooth core specification v1.0 -
2.1+edr. https://www.bluetooth.org/Technical/
Specifications/adopted.htm, 1997-2007.

[12] Bluetooth, SIG. Bluetooth core specification v4.0.30.
https://www.bluetooth.org/Technical/

Specifications/adopted.htm, June 2010.

[13] A. J. Menezes, P. C. Oorschot, and S. A. Vanstone.
Handbook of Applied Cryptography. BocaRaton: CRC
Press, 1997.

[14] P. Mingard. Elliptic curve based diffie-hellman in
bluetooth v2.1. Master of computer science semester
project thesis, EPFL, Switzerland, 2007.

[15] R.-W. Phan and P. Mingard. Analyzing the secure
simple pairing in bluetooth v4.0. Wireless Personal
Communications, 64:719–737, 2012.

[16] S. Sandhya and K. Devi. Analysis of bluetooth threats
and v4.0 security features. In Computing,
Communication and Applications (ICCCA), 2012

International Conference, pages 1–4, Feb.

[17] M. Shrivastava. Analysis of security risks in bluetooth.
In IJCAR, volume 1, pages 88–95, December.

10



Figure 1: A diagram describing the transitions of the initiator and responder, and the messages that are
passed across during SSP. Created by the author.

11



Figure 2: Table of Murphi state exploration results when searching for attacks. Created by the author. *
denote the models that are tested when the initiator cannot initiate a connection with an intruder device.

Figure 3: A diagram describing the MitM attack for the Just Works association model. Created by the
author.

12



Figure 4: A diagram describing the “Impersonator” MitM attack for the Numeric Comparison association
model. Created by the author.

13



Figure 5: A diagram describing the “Proxy” MitM attack for the Numeric Comparison association model.
Created by the author.

14


