
Decrypting The Morris Code

D. W. Jia∗

Stanford University
450 Serra Mall, Stanford, CA 94305, USA

I. GENISIS

In 1988, Robert Tappan Morris, a graduate student in
computer science at Cornell University, constructed the
Morris Worm. The Morris Worm was the first major
attack on the budding inter-web of connected comput-
ers at universities, research institutions, and government
agencies called the Internet (Fig. 2).

A significant flaw in what was supposed to be merely a
research project to reveal the security loopholes of UNIX
systems inadvertently turned Morris’s program into an
attack that caused significant damages to computers and
information infrastructures across the nation, affecting
over six thousand major UNIX machines, with some es-
timates of total cost as high as $10,000,000 (US v. Mor-
ris).

Yet, because of its overarching impact on the greater

FIG. 1: An Image of Robbert T. Morris, creator of the Morris
Worm and current professor of computer science at the Com-
puter Science and Artificial Intelligence Laboratory (CSAIL)
at MIT. Image recreated by the author. Original image from
the MIT CSAIL website.

∗djia@stanford.edu

computing community, the Morris Worm was instrumen-
tal in shedding light on the importance of computer and
network security.

In this paper, we will first investigate the technical
flaws in the computer systems that the Morris Worm
was able to exploit, then examine the inherent bugs in
the design of the Worm that produced its devastating
effects, and finally discuss the cost and damages it in-
curred. We will then assess this event as a pivotal factor
in legitimizing the field of network security.

II. AN EXPERIMENT GONE WRONG

Just before midnight on November 2, 1988, the twenty-
three year old Morris planted a computer program he had
been painstakingly constructing for weeks on a computer
connected to the Internet at the Massachusetts Institute
of Technology (MIT). This program, a computer worm,
was intended to replicate itself and spread silently from
computer to computer. All it needed was one seed.

For Morris, planting the seed at MIT was an excellent
opportunity to disguise its origin. From here, as we will
see, his Worm quickly spread autonomously throughout
the network.

The Worm exploited three main security loopholes in
the UNIX system to infest neighboring computers on the
network (Fig. 3). Its most preferred method was to crack
users passwords and attempt to login directly to remote
computers. If this fails, the Worm would take advantage
of small bugs in the “fingerd” and “sendmail” commands
of the UNIX system to gain access to its targets. To
better understand these design flaws, we will discuss each
of the exploits in detail.

III. DECODING THE WORM

First, the Worm looked to find username and en-
crypted password pairs. On the UNIX machines that the
Worm infected, files containing usernames and encrypted
passwords of all users on the network were publicly view-
able.

According to Schmidt and Darby, “[t]his mean[t] that
the Worm could compare various encryptions of possible
passwords against the encrypted passwords in this file
without triggering security warnings.” Many of these
files were also stored in the same location on different
systems, making it even easier for the Worm to detect
them (Schmidt and Darby).

2

FIG. 2: A graph illustrating the connected nodes of the Internet circa 1986. Each node represents an end connection point. MIL-
NET, ARPANET, WIDEBAND, and SATINET are centralized connection locations. Cite: BBN Communication Corporation.

A. Remote Login

The Worm was programmed with code to try to
recover these passwords through brute-forced cross-
checking against words in a dictionaries. Using this
method, the Worm was sometimes able to recover en-
crypted passwords for the target addresses. It would then
use the recovered username password combination to re-
mote login to the target machine and download a copy
of itself onto the new host computer and subsequently
infect it.

In addition, during the process of looking through pub-
lic files, the Worm would also be able to gather a list of
addresses of neighboring machines on the network that
could be potential targets. The following two infection
methods utilize this collected list of addresses to spread
the worm without depending on the use of login pass-
words.

B. “fingerd”

If remote login failed or no passwords were recovered,
the Worm then resorts to exploit a crucial flaw in the “fin-
gerd” command. This innocent-sounding command was
used to retrieve information from a remote machine. Nor-
mally, it took an input of no more than 512-characters,
but because of a flaw in its design, instead of ignoring
any input that exceeds the 512-character limit, the excess
characters would automatically be copied on the memory
stack of the remote machine.

This means that a malicious user can execute arbi-
trary code on the remote machine by carefully construct-
ing an input larger than the 512-character limit. The
Worm cleverly took advantage of this exploit by calling
the “fingerd” command with its carefully constructed in-
put where the extra characters installed a small program
onto the remote computer that downloaded a copy of the

3

Worm to infest the new machine.

C. “sendmail”

The third and final exploit relied on a major flaw in the
“sendmail” command. As its name suggests, the com-
mand was standard on many UNIX systems for send-
ing emails. The designers of “sendmail” added a set-
table “DEBUG” flag that “allowed someone to send mail
to a process, rather than a user account” (Schmidt and
Darby). This was originally meant to streamline the pro-
gram testing process. Although this was indeed a com-
mon method software engineers used to assist the de-
bugging and testing process, it was never taken out of
the production version of the program. As a result, all
copies of the program that were distributed included this
extraneous feature (Schmidt and Darby).

Because of this, the Morris Worm was able to send a
carefully constructed message using the “sendmail” com-

FIG. 3: A flow diagram showing the high level logic that the
Morris Worm used to infect host machines and spread itself
onto other machines. This diagram is created by the author.

mand with the “DEBUG” flag turned on. When this al-
tered message was interpreted at the remote machine, be-
cause the “DEBUG” flag was enabled, the receiver would
pass the message to a process instead of a user account.
This resulted in code being executed at the remote ma-
chine to download a copy of the worm onto it, thereby
infecting the machine.

Yet, in some cases, all of these methodsremote login,
“fingerd,” and “sendmail”would prove to be unsuccessful.
In this case, the Worm would mark the target as immune
and move on to the next potential target on its address
list.

IV. WHO’S FAULT WAS IT ANYWAYS?

After seeing the Worm turn these seemingly trivial sys-
tem bugs into major security loopholes, it may be con-
venient to label software engineering errors as the main
culprits of the network failure. However, just as much
responsibility for this massive network failure could be
attributed to the unprecedented nature of the attack.

Unlike the Internet ecosystem today, where software
engineers are largely aware of the network security
threats, “[t]here had never been a simultaneous large-
scale security event prior to [the Morris Worm]. . .[i]t was
the first significant denial-of-service issue that came to
peoples attention” (Marsan). Before 1988, computer net-
work security was simply “not a major concern of Inter-
net community, at least, not to the degree it was after
November 2.”

Software developers who were more used to developing
for disconnected individual machines were not as aware
of the security implication of interconnected computers.
They were far more focused on other features such as ease
of use and functionality (Schmidt and Darby). The small
bugs in the UNIX operating systems that the Worm had
cleverly exploited were disregarded and brushed off as
being less essential to the overall system.

Nevertheless, many of these security loopholes were in-
deed simple programming errors that were overlooked in
the testing process or forgotten altogether. Inserting a
line of code to check for the input character size could
have easily averted the attack that utilized the buffer
overflow bug in “fingerd”. It also would not be unrea-
sonable to blame the error in “sendmail” on inadequate
testing or simply a memory lapse.

The Worm demonstrated that these simple flaws,
though seemingly small, could still lead to significant se-
curity risks. The Worm also forced “close re[-]inspection
of operating systems” code, which led systems design-
ers to discover “a number of other bugs that the worm
did not exploit” (Schmidt and Darby). In later sys-
tems, many of these bugs, including the ones in “fingerd”
and “sendmail” have been patched, and password files
made no only publicly viewable by all users on a network
(Schmidt and Darby).

4

V. WHAT GOES AROUND COMES AROUND

Having discussed the inherent flaws of the system and
oversights that have led to major security loopholes, one
might ask: to what responsibilities should the original
designer of the Worm, Robert Morris, have to answer?
It was, after all, his Worm that caused this upheaval in
the computing community. But in fact, Morris never in-
tended for the Worm to do any harm. He was purely
intellectually motivated. Morris original vision was to
merely spread “a tiny program. . .and have it secretly
take up residence in the memory of each computer it
entered. . .always hiding in the background to escape de-
tection.”

Its creator never meant for the Worm to slow down
computers (Markoff), and in fact created, albeit unsuc-
cessfully, specific mechanisms to deter any compromises
of normal performance on infected machines. By spread-
ing it silently, he simply wanted to demonstrate the
network vulnerabilities that he had discovered. Yet, it
turned out that flaws in Morris own code had caused the
unintended catatonic effect that the Worm had on the
systems that it plagued.

There were several key flaws in the design of the Worm.
Morris knew that many instances of the Worm running
on the same machine would clog up the computers mem-
ory and eventually cause it to crash. With this in mind,
he designed the Worm so that each time it infected a
machine, it would check for the presence of other worms
by sending out a signal to which other Worms could lis-
ten. When a preexisting Worm is found, a global variable
called “pleasequit” is set so that the new Worm would
know to quit its process. However, throughout the en-
tire lifespan of a Worm, only one such signal is ever sent
out. This means that if multiple instances of the Worm
infected the same clean machine at once, their signals
looking for existing Worms would all be sent out at once.
But because these Worms infected the machine simul-
taneously, there would be no preexisting Worms on the
system to listen to their signals. Thus, no Worm would
receive the signal. Each Worm then, believing that it
was the only one running on the current machine, would
proceed to infect it. Because a Worm only sends out this
seeking signal once in their lifespan, all of the Worms
that have infected this machine, unaware of each other,
would become invulnerable. Also, in many cases a ma-
chine would be heavily loaded with Worms, causing a
significant lag in the signal transmission process. The
result is that even when a signal was received, the abnor-
mally high latency would cause the Worm to label it as
a false signal.

Finally, in an over-ambitious effort to eliminate the
possibility of programmers manually setting the “please-
quit” global variable on the network to prevent the
Worms infection, Morris designed the Worm so that a
certain percentage of the infecting swarm would never
listen for the existence of other Worms and would con-
tinue to infect regardless of the state of “pleasequit”. In

perhaps the most significant blunder of the Worms de-
sign, Morris set this ratio of immortal Worms to be one
out of seven when in fact, given the conditions, “this
choice was off by a factor of about 10,000” (Schmidt and
Darby).

In addition to the already inherent design flaws of the
Worms exit conditions, this extremely overcompensated
ratio allowed multiple copies of the Worm to readily take
over a machine, drain its system resources, and eventu-
ally cause it to crash. In this way, the young Morris, in
an innocent effort to showcase his research and intellec-
tual interests, caused over 6,000 computers to crash in a
matter of hours.

VI. NOT THE HACKER WE DESERVE, BUT
THE HACKER WE NEED

Although causing little long-term damages, the Mor-
ris Worm infected roughly ten percent of the esti-
mated 60,000 computers connected to the Internet almost
overnight, affecting Sun 3 systems and Digital VAX com-
puters running BSD UNIX (US v. Morris). The original
intent of the Worm was to prove the security flaws in the
network. It was meant to do nothing besides infect com-
puters connected the Internet. But Morris major design
flaws as we have discussed had caused it to self-replicate
in already infected machines and significantly slow down,
and in many cases, crashed the computers.

The creator of the Worm, who is now a professor of
computer science at MIT (Fig. 1), was later convicted
of violating the Computer Fraud and Abuse Act. At
the time, Morris became the first person to be convicted
under the act. He was later sentenced to three years pro-
bation, four hundred hours of community service, and
fined $10,000. According to US v. Morris, while the
Worm caused no physical damages to the machines, the
United States General Accounting Office estimated that
$100,000 to $10,000,000 in damages were lost due to lost
Internet access and reconfiguration costs of machines that
were infected (U.S. v. Morris). This course decision set
the precedent that tampering with public computer net-
works, even for research, should be done with caution.

In spite of the uproar the Worm caused in the national
computing community, it did little to compromise infor-
mation security. At the time that the Worm was released,
the Internet was still in its infancy, so the approximately
6,000 affected computers were almost entirely composed
of those from research institutions and government agen-
cies. Although these computers held important docu-
ments, the worm did not alter or destroy any files, save
or transmit any passwords that it cracked, nor did it
cause any physical damage (Schmidt and Darby).

The most significant breach of information security
would perhaps be limiting access and availability of infor-
mation. At sites where computers were being infected,
system administrators pulled computers off of the net-
work in an effort to stop the Worm from spreading. Some

5

were forced to shut down and restart the machines to
manually kill off the Worm. Ironically, many of these ac-
tions proved to be counterproductive because disconnect-
ing from the network prevented the reception of several
key messages that were sent out on the network detailing
methods on the Worms removal. At least one of these
messages was sent out by Robert Morris and one of his
colleagues when they discovered the unintended adverse
effects of the Worm.

In retrospect, perhaps the most prominent conse-
quence of “The Great Worm” of 1988 was the profound
effect it had on legitimizing the field of network secu-
rity and its central role in “set[ing] the stage for net-
work security to become a valid area of research and de-
velopment” (Marsan). Prior to the Morris Worm, the
Internet “was considered a friendly place, a clubhouse”
(Marsan) where information could be passed and every-
one was trusted. “[C]omputer security was not a ma-
jor concern of [the] Internet community” (Schmidt and
Darby). The Worm showed the greater computing com-
munity that some members could have malicious intent in
mind (Marsan), and that engineers must defend against
these intents.

FIG. 4: A floppy disk containing the original 99 lines of source
code for the Morris Worm, found in the Boston Museum of
Science. Credit: Wikipedia.

Indeed, the Worm “foreshadowed how future dis-
tributed denial-of-service attacks would be used to over-
load systems and knock them off the Internet” (Marsan).
Not only did the resulting court case set a precedent for
future cases of unauthorized network access, the Morris
Worm made it clear that security was as important as
usability, efficiency, functionality and any other major
tenants of software development.

Looking back with this in mind, one might not be so
inclined to hold Mr. Morris accountable for wrongdoing.
Yet, regardless of the moral and ethical implications of
the infamous Worm, it proved to be the crucial piece that
catalyzed the transformation towards a more security-
aware computing ecosystem. As the New York Times
puts it shortly after the Worm became a national sensa-
tion, “it was a programming triumph fit for publication
in a journal. . .it caused no lasting damage. . .it pointed
up far more serious security threats” (Wines).

6

[1] U.S. v. Morris. United States Court of Appeals, Second
Circuit. 7 Mar. 1991. Online.

[2] Markoff, John. “How a Need for Challenge Seduced
Computer Expert.” The New York Times. The
New York Times, 06 Nov. 1988. Web. 18 Apr. 2012.
¡http://www.nytimes.com/1988/11/06/us/how-a-need-
for-challenge-seduced-computer-expert.html¿.

[3] Wines, Michael. “A Youth’s Passion for Comput-
ers, Gone Sour.” The New York Times. The New
York Times, 11 Nov. 1988. Web. 18 Apr. 2012.
¡http://www.nytimes.com/1988/11/11/us/a-youth-s-
passion-for-computers-gone-sour.html¿.

[4] Kotadia, Munir. “16 Candles for First Internet Worm -
CNET News.” CNET News. CBS Interactive, 3 Nov. 2004.
Web. 18 Apr. 2012. ¡http://news.cnet.com/16-candles-for-
first-Internet-worm/2100-7349 3-5438291.html¿.

[5] Schmidt, Charles, and Tom Darby. “The What,

Why, and How of the 1988 Internet Worm.”
The What, Why, and How of the 1988 Inter-
net Worm. 1 Aug. 1998. Web. 18 Apr. 2012.
¡http://ethics.csc.ncsu.edu/abuse/wvt/worm/darby/worm.html¿.

[6] Cyberpunk by Katie Hafner and John Markoff, Touch-
stone Books, New York. 1991

[7] Marsan, Carolyn. “Morris Worm Turns
20: Look What It’s Done.” Network
World. 03 Oct. 2008. Web. 18 Apr. 2012.
¡http://www.networkworld.com/news/2008/103008-
morris-worm.html¿.

[8] Page, Bob. “A Report on the Internet Worm.”
Electrical and Computer Engineering Dept. Ryer-
son University. 07 Nov. 1988. Web. 18 Apr. 2012.
¡http://www.ee.ryerson.ca/ elf/hack/iworm.html¿.

