
Symp.ly Real-Time Collaboration System

David W. Jia
Stanford University
djia@stanford.edu

ABSTRACT
In this paper, we describe a novel real-time collaboration sys-
tem, Symp.ly that can be utilized both as a group collabo-
ration tool, and as an individual task management tool. Ex-
isting productivity software has two main problems. First,
they are either only effective for high level milestone and
goal setting, or low level individual tasks; no collaboration
tool solves both problems. Second, they generally do not pro-
vide real-time collaborative syncing with negligible time de-
lay. Symp.ly solves both of these problems by providing an
infinitely nestable hierarchical organizational structure, and
fully integrated real-time syncing for both text and data struc-
ture. We also conducted an empirical study that demonstrated
the viability and effectiveness of Symp.ly. We highlight the
important features that make a collaboration tool effective in
group-based work environments.

Author Keywords
Real-time collaboration; task management; hierarchical
abstraction; operation transform.

INTRODUCTION AND MOTIVATION
As collaboration tools become more crucial for the growing
amount of collaborative work, task management tools have
also become increasingly important for workers to stay fo-
cused and efficient. However, few tools exist that allow for
both individual task management and project collaboration to
take place simultaneously.

There are two main obstacles that project collaboration tools
face: a need for hierarchical abstraction, and a need for real-
time synchronization.

Hierarchical Abstraction
Collaboration applications have an inherent need for hierar-
chical abstraction. They must be able to satisfy task man-
agement at the individual level as well as collaboration needs
at the group level. This is because any collaboration must
inherently start at the individual level. Higher level project
managers or group leaders break down tasks into smaller sub-
tasks, which are subsequently broken down into even smaller
sub-subtasks, until finally they are able to be completed by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI’12, May 5–10, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

an individual and check off from the list of all the tasks for
the project. This means that for a collaboration tool to be
effective and efficient, it must also function as a task manage-
ment tool. However, there is a “gap” between collaboration
and task management applications because of their inability
to resolve the user interface to allow both organization of high
level information and structure of low level tasks.

Real-Time Synchronization
Another important aspect of collaboration missing in the ma-
jority of existing tools is the ability to access and modify data
in real-time. In other words, these tools lack data concur-
rency. In many cases, collaboration requires a sense of im-
mediacy. Because of this, group members need to be able
to access the same data and see the changes made by other
team members as they happen [13] [23]. Efficient collabo-
ration will inherently require immediate and real-time sync-
ing of shared resources [19]. The necessity of real-time tech-
nologies in collaboration tools is very much analogous to the
emergence of real-time communication tools like text and
video chat and their synergistic relationship with over-time
tools like email. As such, modern collaboration tools (and
by extension, task management tools) must support real-time
collaboration.

Anatomy of a Project Collaboration Application
With this in mind, we propose that an effective collaboration
tool should satisfy at minimum the following criteria:

1. It should work well on the individual level as a task man-
agement tool.

2. It should have collaborative features that allow concurrent
access to and sharing of data by multiple users.

3. Its interface should be both simple and not obscure the day-
to-day usage, but also support advanced features “under the
hood” for power users. fcall

4. It should be able to handle tasks of any size from small
individual tasks to large team-based milestones with ease
and through an interface that is intuitive and non-obtrusive
to the user.

5. It should be in real-time to facilitate collaboration between
remote teams.

While existing collaboration and task management software
may satisfy one or more of the above features, none satisfies
all of them. This is a primary motivation for the creation of
Symp.ly. Of course there are other criteria that can be consid-
ered, such as security, serialization, interoperability between
multiple devices and platforms such as iOS, Android, other

cell phones, etc, and interoperability with other supporting
applications including spreadsheets and video editing. But
the main purpose of this paper is to demonstrate and provide
a conceptual understanding of the most crucial and pertinent
aspects of an effective collaboration tool. Whereas other cri-
teria may also be important for specific use cases, they are
either secondary to the topic of this paper or can be easily
included by extending Symp.ly.

For example, we can allow support for other application like
spreadsheets and videos by extending Symp.ly to allow file
attachments at any node. We can then implement real-time
features for these applications. As such, security and other
features will not be discussed in detail in this paper and can
be included in future work.

BACKGROUND
In reviewing previous work, we focus on applications that
satisfy a certain baseline requirement, that highlight one or
more differentiating characteristics. We do not discuss other
task management and collaboration tools that are similar to,
or near copies of the applications discussed in this section.

Commercial Efforts
Remember The Milk (RTM)
Remembering The Milk is a classic web-based task and time
management tool, and one of the earliest of its kind. Overall,
many users use it as a low level task management tool for
the individual. It has consistently being rated as one of the
best to-do list applications [21]. RTM includes many single-
user features, such as adding various fields to tasks, including
location, due date, and tags.

Much of RTM’s drawbacks as a collaboration and task man-
agement application lie in its lack of support for sharing and
structural organization by not having subtasks. Also, its inter-
face is poorly made for efficiently managing tasks. The user
must click through multiple menus for certain actions such as
reordering tasks. It has minimal sharing features, which are
also not real-time. RTM is very difficult to use with groups,
and most people use RTM only for simple daily todo-lists.

Basecamp
Like RTM, Basecamp is one of the earliest commercially
available web-based collaboration tools [10]. Basecamp’s
approach to modulating complexity is to separate functions
into different applications. For example, within a Basecamp
project, groups can post messages, create todo lists, set mile-
stones, and upload files. Each of these functionalities is sepa-
rated out into its own application that exists on different tabs
of a project’s user interface [10].

At the time of its inception, Basecamp was the best alter-
native to using email or paying large licensing fees for Mi-
crosoft Sharepoint or other enterprise level collaboration ap-
plications. One of Basecamp’s main contributions to the col-
laboration space is its availability to small to medium size
businesses. From working on Basecamp, the original devel-
opers were able to create the Ruby on Rails framework, which
contributed significantly to the rapid development of agile ap-
plications [7].

However, Basecamp’s approach of separating different func-
tionalities into different applications is ineffective in project
collaboration. By compartmentalizing data into silos, the
inherent hierarchical nature of data and information is lost.
There is no easy way to link informations from one applica-
tion to another. For example, often times a todo list will be
related to a milestone, a message, or a file, but since the todo
lists exist in a different application from the milestones, mes-
sages, or files application, linking a todo list to another piece
of data or resource is difficult at best. Also, asides from its
chatroom application, Basecamp has no real-time collabora-
tive functionality.

Asana
Asana is a group collaboration tool for small to medium size
companies. Unlike Basecamp, Asana tries to take a more in-
tegrated approach to collaboration. At its core, Asana is a task
management tool with sharing and collaboration capabilities.

Asana’s main contribution to the field of collaboration soft-
ware is its smooth interface and its promise to create a frame-
work called LunaScript for easily creating web-based real-
time applications [3]. LunaScript was publicized by Asana
near the company’s conception but was never released. The
purported framework would have allowed developers to bind
server-side objects to front-end views without bootstrapping
middlelayer logic [3].

Unlike the tools discussed so far, Asana is in semi-real-time,
which means that users do not need to refresh the applica-
tion to see changes. However, the time it takes for oper-
ation to sync between clients is not negligible. For Asana,
the client-to-client round trip time is between 5 to 8 seconds,
whereas negligible sync times are in the 200 to 500 millisec-
onds range.

Another major setback is that Asana only supports two levels
of subtasks. Although Asana has a very clean and intuitive
user interface, the lack of multi-level subtasks makes it diffi-
cult for users to organize hierarchical information. Because
of its lack of hierarchy and true real-time syncing, Asana is
not an ideal candidate for effective collaboration.

Google Docs
Perhaps the most commercially successful real-time collabo-
ration tool, Google Docs provides a suite of applications that
allows users to share and work on documents, spreadsheets,
presentations, and other files together on a browser.

In its recent update, Google Docs now exhibits a very pow-
erful real-time functionality that allows users to see changes
made by other users within hundreds of milliseconds, making
the round-trip time negligible to the user experience. Google
was able to do this by leveraging the technology from acqui-
sition of technology company Etherpad [2]. Etherpad used a
Scala based backend engine and created a non-blocking web-
server to allow multiple clients to concurrently access a single
resource. Etherpad was one of the first to leverage this tech-
nology. With the acquisition of Etherpad, Google was able
to integrate this real-time technology to Google Docs, which
significantly increased its syncing speed from several seconds

to less than 200 milliseconds, which is negligible for most use
cases [2].

Because of this, one of the main contributions of Google Docs
to the field of collaboration software is its push to make col-
laboration real-time. Google Docs’ main drawback is its lack
of task management capabilities.

Research Efforts
Since the 1980s, much research has been done on computer-
supported cooperative work (CSCW) and groupware, which
are software which help groups work together, which be-
came a precursor to today’s collaboration software. Many
of these software applications focus on creating a shared
workspace where users can work together concurrently in a
non-conflicting way.

In this section we discuss the previous research efforts from
earlier CSCW research to more modern efforts such as
Google Wave.

TeamRoom
One example of an early research effort in groupware is
TeamRoom, a persistent and shared workspace environment
that allow multiple users to work together in real-time [20].

Users can create “rooms” to which other users can login.
When logged in to a room, a user can add documents to the
room, such as images, post-it notes, outliners, graphs, or a
custom applet. When these share resources are added, other
users are also able to see them. TeamRoom also has a chat
features at the bottom of the screen in which users can com-
municate.

This early effort in real-time collaboration does not allow
concurrent editing of text or structure. TeamRoom uses a
lock-based concurrency architecture where users must finish
editing a note before the changes are displayed on the other
client’s end, and only one user can edit a document at one
time. Nevertheless, early efforts like TeamRoom was able to
demonstrate the feasibility of real-time technologies in col-
laboration software [20].

DOLPHIN
Like TeamRoom, DOLPHIN [22] allows concurrent usage of
a shared workspace through non-conflicting operations such
as free pen-based drawings and adding text snippets to a
shared interface. DOLPHIN and early collaborative applica-
tions were made possible because they did not have to support
conflict-resolution. In other words, the operations they sup-
port were never causally dependent. Even though they may be
considered concurrent in time, the operations that each client
supported, by construction, never conflicted with one another.
So regardless of what one client does, another client can per-
form its own operations concurrently without having to worry
about the context of these operations in the scope of any other
clients. This means that the server did not need to handle con-
flict resolution.

Google Wave
Google Wave is a real-time collaboration application origi-
nally developed to replace the email protocol [1]. For various

reasons, it has since been discontinued by Google and reor-
ganized into an open-source project managed by Apache.

Because email was one of the earliest collaboration tools
which remains prevalent so today, Google Wave sought to re-
place email by providing a very similar list-message interface
that integrated Google Docs-like real-time collaborative fea-
tures. Users can create and send messages, called “Waves,”
to each other, each of which mimics a free-form Google Docs
document, allowing users to edit text in real-time and add
gadgets such as user polls or mini-games.

Like Google Docs, Google Wave has a robust real-time in-
terface. Its internal architecture is based on a causal, con-
vergence, and an intention preserving operation transform
architecture much like a generalized n-client version of the
Jupiter Collaboration System [1]. Google Wave also supports
markup in its text editing.

However, like Google Docs Google Wave lacks the nestable
and hierarchical structure necessary for effective task man-
agement and collaboration. It uses essentially the same linear
list and free-form document structure that Google Docs uti-
lizes.

SYMP.LY
Symp.ly take on collaboration and task management from a
new perspective. Symp.ly is a real-time collaboration appli-
cation that utilizes nestable, hierarchical structured data that
gives users a seamless interface of collaboration on all hier-
archal levels, from high-level milestone creation to low level
task management.

Functionally, Symp.ly considers collaboration and task man-
agement holistically. This is in contrast to other application,
which consider collaboration on a feature-to-feature basis.
Considering collaboration from a feature-to-feature perspec-
tive is flawed and often times leads to complex interfaces and
obscured usability. While these application may satisfy each
feature when taken separately, they make little practical sense
as a whole. This is because different features lead to contra-
dictory interfaces, designs, and functionalities. Considering
features separately also does not effectively capture relation-
ships between data. This is the case with many enterprise
software such as Microsoft Sharepoint.

Symp.ly takes a different approach to design by considering
collaboration and task management together and holistically.
Symp.ly first considers how users think, which is inherently
hierarchically. From the way we acquire and retain informa-
tion, to our logic and reasoning process, to our way of reduc-
ing and managing complexity, hierarchy and abstraction are
consistently a defining characteristic. Thus, a good collabo-
ration software must take on a hierarchical structure. We will
soon see that hierarchical and nestable structure is an essence
of the Symp.ly collaboration software.

Symp.ly Application Architecture
At the very highest level, Symp.ly is organized into projects.
Each user is able to create multiple projects. Each project can
be shared with multiple users or kept as a private project.

Projects contain items. Each item has a parent element and a
list of children, each of which is also an item. In this way, a
project can be modeled as a hierarchical tree with unlimited
depth and no leaf nodes. In addition to keeping track of parent
and children elements, items in the same hierarchical level
also have a context of order.

From the user interface, a project looks like a nestable bullet
list. Each item is its own entity and can be moved, deleted,
or changed. As such, each item can contain meta-data. This
may include tags and notes. If Symp.ly is to be used as a
task list, meta-data may include due dates and assignees. As
mentioned earlier, each node can also represent a larger data
resource such as a document, spreadsheet, presentation, or
drawing, each of which exhibits its own real-time collabora-
tive features.

A hierarchical tree structured data model was chosen because
it is the most general and fundamental hierarchical structure.
Symp.ly is extensible and can meet specific collaboration and
task management needs.

Nestable Data Structure and The User Interface
Because of of the high frequency of usage, a user’s ability
to interact with the software interface is one of the key de-
terminants of success in collaboration and task management
software. With this in mind, Symp.ly employs three key user
interface features: infinitely hierarchical and nestable struc-
tures; collapsable items; and zoomable items.

Hierarchical Data Structure
Symp.ly has an infinitely recursive hierarchical data structure
in which items can be nested in each other with unlimited
depth. This is functionally relevant in several ways. When
Symp.ly is used as a task management application, the in-
finitely nestable items can act as sub-items, sub-sub-items,
and so on. Items in Symp.ly can also be used as simple listed
notes and outliners. In this case, the purpose of the infinitely
nestable items are even more clear: they can act as a hierar-
chical information structure. An even simpler use case is a
brain map, which highly utilizes hierarchical data to map out
acquired information and knowledge.

Nevertheless, two important questions still arise about an “in-
finitely” recursive structure: first, why should the structure be
allowed to recurse infinitely, instead of just allowing a con-
stant number of hierarchical depths? Second, do users re-
ally desire a hierarchical data structure that allows for infinite
nesting? The first question was indeed taken into consider-
ation when building Symp.ly. One possible concern with an
infinitely recursively structure is that it will cause clutter and
become obtrusive to the interface when viewing and editing
project items. This “hierarchical breakdown” is often consid-
ered to be one of the most significant problems with hierar-
chical user interfaces, and is difficult to solve [6].

We will see that our answer to the latter question will natu-
rally provide an answer to the former. In short, we do believe
that users care about as many layers of nesting as the appli-
cation can provide. We believe that the number of levels of
nesting should solely be the user’s decision. The application
should not limit a user’s need for nesting in any way, and

Figure 1. An illustration of the collapsable items of Symp.ly. The items
that whose bullets are shaded in gray represent items that are collapsed
and have more children nested under them. This allows users to hide
items that are not currently relevant to the hierarchical context.

a user should not have to worry about her ability to initiate
another layer of hierarchy [17] [16] [4]. For example, a daily
todo list may only have two or three levels of sub-items, but in
a large enterprise level use case, tens of levels of nesting may
be required to organize the high level goals and milestones of
the project down to the individual items. In the case of a brain
map, hundreds of levels of hierarchy may be needed.

Thus, hierarchy is not only deeply rooted in the way we think
and process information, but also presents itself practically.
Yet, many users are unable to communicate this need. This is
because they seldom have the opportunity to use applications
that offer both unlimited nestable items elegantly and does not
interfere with the normal use and functionality of the applica-
tion [6]. Hence, users have been trained to not ask this much
out of their applications. Therefore, questions about having
an infinitely recursive and nestable structure are solved if we
can provide an elegant interface for the user that is not only
non-obtrusive, but also intuitive.

However, hierarchy is difficult to represent in a computer in-
terface, especially one that is infinitely recursive. Screen real-
estate is limited and users can only view and take in so much
at once. Symp.ly solves these problem by utilizing several
user interface techniques.

Collapsable Items
Collapsible items help solve problems that arise from hierar-
chical structures. As shown in Figure 1, each item that con-
tains children items in the hierarchical tree has a plus or minus
button to its left, which appears when the mouse cursor hov-
ers over the item. When the button is a minus sign, the item is
uncollapsed, or expanded, indicating that all of its children el-
ements are viewable. In this expanded state, the user can click

Figure 2. An illustration of the zoomable items of Symp.ly. Currently,
the “Project 1” item is being zoomed. The zoomed item becomes of the
root node and is displayed on the top of the contents area. Also, a bread-
crumb interface appears on top of the content area to show the exact
location of the current root node. This allows users to focus on a partic-
ular task while keeping other tasks in their respective hierarchies.

on the minus button to collapse the item, which will make all
of its children elements non-visible, and the space they take
up collapsed. When this happens, the button to the left of
the item will become a plus sign, and the bullet point will be
highlighted with a grey annulus. By highlighting the bullet
point when the children are collapsed, users will be able to
easily distinguish between collapsed and expanded items.

Having collapsable and expandable items in a hierarchical
data structure has been shown in several studies to signif-
icantly reduce a user’s time to seek data [6]. By display-
ing high level information in a cohesive and contiguous way
while giving users the choice of displaying or hiding certain
items on demand, collapsable items effectively solves the hi-
erarchical breakdown problem we described above [6].

This collapsible tree interface helps solves the problem of
clutter and makes viewing the infinitely recursively tree pos-
sible [14] [6]. However, collapsable items do not fully solve
the problem of manipulating, editing, and navigating the hi-
erarchical tree [24]. Thus, we introduce zoomable items to
solve this problem [11].

Zoomable Items
Each item in the hierarchical tree of a Symp.ly project is
“zoomable”. In the user interface, the bullet point associated
with each item in the hierarchical tree is clickable. By click-
ing on the bullet of an item, the user interface will “zoom” to
that particular item. This means that the item that has been
clicked on becomes the root node of the tree in the interface.
On the top of the page, there is also a breadcrumbs interface
that displays the full “path” to the current item, which is an ar-
row delimited, ordered list of all of the root item’s ancestors,

starting from the root node of the entire tree. In this way, each
item can become the root node of the tree interface displayed
as shown in Figure 2.

An analog for this zoomable interface is the foldering inter-
face of a file system that can be navigated in any modern day
windowing operating system. Folders can be seen as an in-
finitely recursive hierarchical tree structure [17] [14]. Any
folder in the tree can be opened in its own window which
will display all of its children in that window. The only dif-
ference is that Symp.ly has no terminal nodes whereas a file
system generally does. In other words, file systems have files,
which cannot act as folders themselves, whereas every node
in Symp.ly can contain children nodes.

One of the most practical reasons to have a zoomable items
interface is to allow visualization and manipulation of data
at multiple scopes [11]. In the case of collaboration, while
project managers and leaders may want to see the project
from a high level perspective, members of the project as-
signed to do a specific task may want to zoom in to that task
and create a sub-hierarchy of subtasks that are necessary for
completing that task. This gives users both the ability to visu-
alize at a high level, and create new information at a low level
as needed.

Another important reason for the inclusion of a zoomable in-
terface is to allow users to easily navigate the tree by prun-
ing out nodes that are not relevant to a particular context or
task [12]. Pruning, a technique for selectively hiding nodes
that don’t pertain to a particular context, has been shown to
significantly improve a user’s performance speed and overall
satisfaction [12]. Studies have also shown that interfaces that
contain only a collapsable interface without zooming produce
significantly worse user performance results than those that
contain zooming interfaces [24].

This zoomable items interface allows users to edit and ma-
nipulate any node in the hierarchical tree as if it were the root
node. This prevents clutter and obtrusiveness in the infinitely
recursive structure of the interface while allowing users to
take advantage of all of its benefits [11]. Thus, zoomable
items is one of the core features that allows Symp.ly to act
seamlessly as both a collaboration and task management ap-
plication.

Research Efforts in Real-Time Collaborative Technology
A key feature of Symp.ly is its real-time nature. In this sec-
tion, we describe the real-time implementation in Symp.ly.
First, we give background on research in the field of real-time
collaborative technologies and operation transforms (OT).

From the onset of the Jupiter Collaboration System in the
1990s [15] to the mass market adoption of Google Docs in
the mid 2000s, the idea of real-time collaborative systems
has existed for some time. However, real-time systems are
still very difficult to architect and build. Part of the reason
is because of the application specific systems infrastructure
that is required to support real-time systems. Different OT al-
gorithms have to be implemented for different functionalities
across different underlying data structures. There is no unify-
ing data real-time architecture for an arbitrary data structure.

To create real-time technologies, a system must implement
both an OT control algorithm and a system specific OT func-
tion [13]. The OT control algorithm regulates the flow of
operations from server to client and makes sure that opera-
tions are transformed properly with the right OT algorithms.
Although OT control algorithms are more or less generaliz-
able, there is no easy way to generalize OT functions for ap-
plications because operations are specific to application data
structure.

For a long time, real-time collaborative interfaces on the
browser were at worst impossible and at best a hack, because
most browsers did not support server-push technology. With
the introduction of web-sockets and networking frameworks
such as Node.js, building real-time systems from a purely
networking perspective have become much simpler. So the
main difficulty now lies in OT. There has been much research
done in operation transform of text [13] [23] [8], and some
work has also been done on operation transform of hierarchi-
cal structured data [13] [19].

Concurrency Control
Concurrency control became increasing important with emer-
gence of database management systems in the 1970s. Con-
currency control is essential for the correctness of any system
where two different clients can access the same data perform
one or more transactions with time overlap. This occurs in
virtually in any general-purpose database system.

Before the use of operation transform was introduce, building
concurrency control systems involved transactions that ad-
hered to a set of strict rules, called the ACID rules [5], which
stands for atomicity, consistency, isolation, and durability.
There were several early methods developed to handle con-
currency control, many of which are still used today in sys-
tems that might not require immediate reflection of changes
[5]. These include locking, serialization graph checking, and
timestamp ordering.

These methods worked well in early database management
systems, but they are insufficient in handling modern group-
ware and real-time needs [9]. Modern day groupware require
extremely fine-grain sharing of data with negligible response
times.

Consider modern text editing as an example. Synchronization
requires a level of granularity to the keystroke while response
times more than several hundred milliseconds are not con-
sidered negligible. If a collaborative text editor implemented
using locking, then the user would have to acquire a lock for
the document on every keystroke, making real-time collabo-
ration impossible. Similarly, consider the use of atomic trans-
action commits. This would mean that each user’s edit would
override the entire document, including the edits of all other
users. Clearly, this is inefficient and ineffective for a real-time
collaborative environment.

Operation Transform
To solve the problem of earlier work in concurrency con-
trol and adapt it to a real-time collaborative environment,
Ellis and Gibbs introduced the concept of operation trans-
form in 1989 [9]. In their paper, Ellis and Gibbs points out

many flaws associated with using locking, especially with
groupware that require immediate, real-time synchronization
of changes across clients [9]. They presented an algorithm
called the Distributed Operational Transformation (dOPT)
Algorithm for handling concurrent operations on a shared re-
source without locking.

Jupiter Collaboration System
In 1995, the Jupiter Collaboration System [15] significantly
improved Ellis and Gibbs’ OT control algorithm by central-
izing the OT logic to a server. It led a series of early papers
published in the late 1980s to mid 1990s that improved and
simplified the OT control and integration algorithm, which al-
lowed for the concurrent access of data from multiple clients.

These systems all described different OT control and integra-
tion algorithms for maintaining consistency and concurrency
between different clients [15], [18], [1]. Systems similar to
the Jupiter adhere to the CCI (causality, convergence, and
intention preservation) model, satisfying the three properties
that must hold:

• Precedence (Causality) property: this ensures that the ex-
ecution order of causally dependent operations is retained
and kept the same as their natural cause-effect order during
operation processing.

• Convergence property: this ensures that when all generated
operations have been executed at all clients, the shared doc-
ument at all these clients converges to the same state.

• Intention Preservation property: this ensures that when a
client executes an operation on a shared document from
the state that the client current resides, the effect of the op-
eration should be the same as the intention of the operation
given the current state, regardless of any other client’s state.

These early research efforts paved the way for later commer-
cial efforts in real-time technology and allowed for real-time
technologies to be adopted by groupware and collaboration
applications.

Share.js
Share.js is one of the most recent efforts made in the open
source community to make real-time technology more avail-
able to web developers. Share.js is a javascript library for
Node.js that allows web application developers to make their
applications real-time.

Share.js utilizes an existing OT control algorithms and gener-
alizes it so that developers may be able to plug-and-play into
their applications. The OT algorithm still has to be written
by the developer, which is tailored specifically to each differ-
ent application. Share.js has received moderate success and
has several example application that developers have created
with Share.js, making their applications have a real-time in-
terface. Share.js provides a simple and easy-to-use API, but
its robustness and ability to create complex applications has
yet to be shown.

Real-Time Interface in Symp.ly
A key feature of Symp.ly is its real-time nature. In this sec-
tion, we describe the implementation of OT in Symp.ly. Then

Figure 3. A high level illustration of a classical operation transform
problem. Client 1 and Client 2 start with the same state 0, but create
two concurrent operations, op1 and op2, respectively. The OT control
algorithm uses the xform function to transform each operation in the
scope of the other. The resulting operations, op1′ and op2′ are executed
on each client. Because of the OT control algorithm, the two clients can
terminate at the same state and convergence is satisfied.

we describe two major operation transform (OT) algorithms.
The first is text OT, which has been utilized by Google Docs
and other online real-time text editors. The second is OT
on the recursive and hierarchical tree structure. We describe
these OT algorithms first from a theoretical perspective and
then from an implementation perspective.

OT Control Algorithm
Real-time applications need to resolve concurrent and pos-
sibly conflicting operations on a shared resource generated
from multiple clients. This requires an OT control algorithm,
which regulates concurrent operations between server and
clients, and an OT transform function, which transforms one
concurrent operation in the scope of another as shown in Fig-
ure 3. The Jupiter Collaboration System paper [15] describes
an OT control algorithm that relies on an OT transform func-
tion, xform. Symp.ly utilizes this algorithm generalized for
n-clients. We do not discuss the OT control algorithm in de-
tail in this paper, as it is already described in [15]. Instead,
we focus on the xform function, which was not described in
detail in the Jupiter paper. The paper mentioned that such an
xform function must satisfy the following condition:

o1 · xform(o2, o1) ≡ o2 · xform(o1, o2) (1)

Here, oi is the i-th operation, the dot product oi ·oj represents
performing operations oi and then oj , and xform(oi, oj)
gives an operation that transforms the operation oi with a con-
current operation oj . Given that operation o1 and o2 are per-
formed concurrently on two different clients, xform(o2, o1)
will give the transformed operation o′2 that is the operation o2
if it were to be performed after knowing o1 was performed.
Similarly, xform(o1, o2) gives o′1, the corresponding scope
of o1.

These transformations must be made on both the client and
server in order to guarantee convergence. On both client and
server, the xform function must be performed on incoming

operations with all sent and unacknowledged operations. This
is because any operations that are received have no context
of all sent and unacknowledged operations. As a result, any
received message is concurrent with any sent but unacknowl-
edged operation.

Textual OT Operations
The Symp.ly Collaboration System utilizes a customized ver-
sion of the xform function above [15]. This xform func-
tion is able to resolve conflicts from a number of opera-
tions. Symp.ly handles not only concurrent operations on
text, but also operations on structural changes that affect the
nested structure of a project. In this section, we describe the
operation that Symp.ly uses to model textual and structural
changes.

Given a document D, let Di represent the i-th version of the
document. To describe textual changes that transform Di to
Di+1, we use an ordered list data structure that contains three
separate types of textual operations on an entire document.
This ordered list describes the change operations that need to
be performed on Di in order to obtain Di+1. Each of these
operation is one of three types:

• del(i) - deletes i characters from the last index.

• insert(s) - inserts the string s at the current index.

• retain(i) - retains (keeps) i characters from the last index.

To obtain this ordered list of changes on text, Symp.ly com-
pares Di+1 with Di and records changes starting from the
character in the 0-th index. Each difference in the two ver-
sions of the document is recorded by one of the three oper-
ations above and saved in the ordered list of changes. For
example, if D1 = “Hello World” and D2 = “hello world!”
then the ordered list of changes that will bring D1 to D2

can be given by the array of operations: [del(1), insert(“h”),
retain(5), del(1), insert(“w”), retain(4), insert(“!”)].

xform Algorithm for Text
Symp.ly’s xform function for text discovers conflicts be-
tween two sets of concurrent operations and resolves them in
a way that preserves causality and client intention while guar-
anteeing convergence. To do this, the function loops through
the first set of operations and compares each operation with
each operation in the second set, while keeping track of the
document index. Two sets of operations conflict when they
attempt to perform different operations at the same index.

For example, consider two sets of operations O1 and O2 that
occur concurrently. If at some index i of the document, O1 is
issuing a del operation and O2 performed a retain operation,
then these two sets of operations, O1 and O2 will conflict on
index i. Symp.ly’s xform operation finds and resolves all
cases of conflict with a redefined set of rules and intention
priorities.

We have ranked the intention priority of the operations in the
following order, from lowest to highest: retain, insert, del.
There are other ways to rank these intention priorities, but the
current rank is a very natural one. In the case of our example,
the delete operation will win since its intention is of a higher

priority because del is an explicit operation whereas retain
is an implicit operation.

Structural OT Operations
In this section, we discuss the OT operations that capture
structural changes. Symp.ly utilizes a hierarchical tree struc-
ture so all the operations related to this structure will deal with
manipulations of the tree. Structural OT can be classified into
one of four types:

• create(n, p, o) - creates a new node n that has parent p.
The last parameter o represents an offset node which will
give the relative position of the new node in the parent node
and will determine its ordering. In Symp.ly, the new node
n is placed right after the offset node o in the parent node
p. This means that o can be null, which will mean that n
should become the first node under p.

• remove(n) - removes the node n and its descendants from
the tree.

• changeParent(n, p, o) - changes the parent of the node
n from it’s current parent to the new parent p. The offset
node o functions in the same way as it does in the create
operation, to determine the node’s ordering within its new
parent.

• reorder(n, o) - reorders the node n to come after the new
offset node o. Note that n and o should both be under the
same parent node.

We next discuss the xform algorithm for these structural op-
erations.

xform Algorithm for Structure
Whereas in textual operation transform, capturing a single
change of a document required an ordered list of basic oper-
ations that describe the entire document, structural OT oper-
ations are in themselves atomic. This means that each of the
operations above represents a complete change in the tree,
and we do not have to depend on a list of operations to de-
scribe a change. Thus, the xform function needs to compare
each operation type with every other operation type, possibly
including itself.

Because of this, the xform function for structures can be rep-
resented as a 4× 4 matrix M , where each element mij ∈M
is a function that gives the transform of operation i with op-
eration j, where each i, j is in the set of structural operations
as we defined above.

Whenever two operations types, i and j are compared with
xform(o1, o2), we simply find the element mij ∈ M and
call mij(o1, o2) where i = type(o1) and j = type(o2). This
will give us the necessary transforms for concurrent opera-
tions under the xform OT control.

Sharing and Collaboration
Because Symp.ly is meant to be used for collaboration as well
as individual task management, sharing is one of Symp.ly’s
most crucial features.

The top level structure of Symp.ly is organized into projects,
each of which can be shared with multiple collaborators.

When a project is shared, the project will appear on the list
of projects for each collaborator.

Because of Symp.ly’s hierarchical yet flexible structure, shar-
ing a project allows different users to focus at different levels
of the tree while maintaining a holistic understand of the en-
tire project. This can be done through Symp.ly’s zoomable
and collapsable items.

Symp.ly’s hierarchical structure naturally allows its projects
to be shared and used for collaboration. A project can be seen
as a collection of information: ideas, notes, tasks, and deliver-
ables. In this way, collaboration is to make sense of these col-
lections of information by associating them with each other
in a structured way. Therefore, for collaboration to work ef-
ficiently, the ability to organize information is crucial. For
example, while it is important to be able to jot down ideas,
take notes, and create tasks, it is equally important in a col-
laborative environment to be able to create tasks related to
notes, create notes related to tasks, and attach ideas to tasks
and notes.

Indeed, this need to associate information is hierarchical.
This desire of hierarchical information is one reason collabo-
ration applications with a linear and siloed organization struc-
ture are not effective. Because Symp.ly’s structure consists
of nested, hierarchical items, each of which are non-terminal
(meaning that each node can be nested further), organiza-
tion of collaborative information is seamless and nonintru-
sive with Symp.ly Finally, Symp.ly’s real-time interface also
enhances collaboration by allowing geographically separate
collaborators to work on the same document together syn-
chronously.

EMPIRICAL RESULTS
In evaluating Symp.ly’s effectiveness empirically, we per-
formed user testing on 12 university students who have all
previously used some sort of task management tool. The sub-
jects were given two tasks: the first task gives the user a pas-
sage about the cell cycle and asks the user to use Symp.ly to
outline the information; the second task describes a task force
in charge of launching a new website for a product, and the
subject is asked to used Symp.ly to map out the milestones,
tasks, and subtasks, etc for accomplishing the goals of the
task force. Prior knowledge of both the cell cycle and website
launch are controlled by sampling a diverse pool of students
mostly without prior domain expertise.

After each of the two tasks, the subject is asked the following
questions:

1. On a scale of 1-5, how effective is Symp.ly as a (1) outlin-
ing or (2) task management tool compared to tools you’ve
used in the past.

2. On a scale of 1-5, how enjoyable is Symp.ly as a (1) outlin-
ing or (2) task management tool compared to tools you’ve
used in the past.

3. What made Symp.ly more or less enjoyable or effective
than other productivity tools.

Questions Task 1 Task 2
1. Effectiveness 3.7 4.7
2. Enjoyment 4.1 4.8

Table 1. Average ratings of effectiveness and enjoyment.

In the above questions, a 5 point Likert scale is with 5 being
the best response indicating that Symp.ly was more effective
or enjoyable than existing applications. The results of the
first two questions are presented in Table 1, which summa-
rizes the average scores given by the subjects to each of the
two questions for each of the two tasks. In answering the
third question, 9 subjects commented on the simple and re-
sponsive nature of Symp.ly, 7 on its hierarchical and nestable
data structure (subtasks), and 6 on its zoomable interface as
the contributing factors to its effectiveness and enjoyability
(users were able to state more than one characteristic).

Results from our pilot study seem to support our hypothesis
that Symp.ly serves as a more effective as well as enjoyable
collaboration and task management tool. In particular, users
found that, on average Symp.ly was more effective and more
enjoyable not only for task management, but also as an out-
lining tool. Future work includes conducting a larger scale
empirical study.

DISCUSSION AND CONCLUSION
One of the key oversights of existing collaboration applica-
tions is the ability to manage information at different hier-
archical contexts. Because people inherently think hierar-
chically, we want not only to be able to understand things
at a high level, such as high level projects goals and mile-
stones, but also be able to manage low level information such
as tasks. We also want to be able to access all hierarchical
levels in between, zooming in and out at will. Providing such
a flexible hierarchy is difficult, and existing applications fail
to capture these abilities in a simple and useful way.

Some applications attempt to solve this problem by providing
a finite (and small) set of hierarchical points at which users
can store information. However, associating relationships be-
tween different information in this system is difficult. More
importantly, users can only work within the hierarchical lim-
itations of the application. It is impossible to add information
at any other hierarchical level. Other applications ignore the
problem altogether by only supporting information organiza-
tion at one particular level, such as the low level of task man-
agement. This linear system of organization may work on a
day to day task management scenario, but it does not work
for collaborative environments.

The second crucial necessity of collaboration is having a real-
time environment. Because more and more work today is
done remotely, synchronous access to and work with data is
becoming more important. Real-time technologies have al-
lowed users to easy edit a document or spreadsheet together
remotely. However, real-time technologies have been difficult
in other forms of collaboration mainly because of the need for
a real-time synced structure as well as text. Symp.ly solves
these collaboration issues by providing a sensible and flexible
way to manage information hierarchically.

Symp.ly utilizes an unlimited nestable hierarchical structure,
which allows users to represent data and relate them flexi-
bly. Because each node in Symp.ly is generic yet highly cus-
tomizable, creating any collaborative information on Symp.ly
is seamless. A node can be used as an outliner to take notes.
Another node can be used as a task list that is related to those
nodes. The ability to nest nodes without limit also allows dif-
ferent nodes to be easily associated with one another.

To solve the user interface challenges of having an infinitely
nestable hierarchical structure, Symp.ly employs collapsable
and zoomable items. Collapsable items allow users to hide
the children of nodes that may not be relevant to the partic-
ular hierarchical context at the time. Zoomable items allow
users to focus on a particular part of the hierarchical tree by
making any node the root node of the tree, like a windowing
file system interface. These two features give Symp.ly a sim-
ple yet flexible user interface for creating and modifying new
items.

Symp.ly also employees a real-time interface, which allows
remote users to collaborate synchronously. Without a real-
time interface, users often times override data, and infor-
mation synchronization across the group members becomes
slow. For the same reason, using locks on data resources also
does not solve the problem of information synchronization.

The results of Symp.ly provides progress to collaboration
tools. While the real-time technology Symp.ly employees al-
lows remote group members to collaboration in a highly syn-
chronous way, the hierarchical structure of Symp.ly naturally
mimics the way we organization information in our brain and
provides for a simple yet powerful way to collaborate and
manage tasks.

REFERENCES
1. Google wave operation transform.

www.wave-protocol.org.

2. Almaer, D. Google acquires etherpad online
collaboration tool, 2009.

3. Almaer, D. Lunascript: A new language and platform to
take your web 2.0 apps to the moon?, 2010.

4. Bederson, B. B., and Hollan, J. D. Pad++: a zooming
graphical interface for exploring alternate interface
physics. In Proceedings of the 7th annual ACM
symposium on User interface software and technology,
ACM (1994), 17–26.

5. Bernstein, P. A., Hadzilacos, V., and Goodman, N.
Concurrency control and recovery in database systems,
vol. 370. Addison-wesley New York, 1987.

6. Chimera, R., and Shneiderman, B. An exploratory
evaluation of three interfaces for browsing large
hierarchical tables of contents. ACM Transactions on
Information Systems (TOIS) 12, 4 (1994), 383–406.

7. Cyras, J. Ruby on rails impact on web application
development, 2011.

8. Davis, A. H., Sun, C., and Lu, J. Generalizing
operational transformation to the standard general

www.wave-protocol.org

markup language. In Proceedings of the 2002 ACM
conference on Computer supported cooperative work,
ACM (2002), 58–67.

9. Ellis, C. A., and Gibbs, S. J. Concurrency control in
groupware systems. In ACM SIGMOD Record, vol. 18,
ACM (1989), 399–407.

10. Featherstone, R. Basecamp. Journal of the Medical
Library Association: JMLA 97, 1 (2009), 67.

11. Gandhi, R., Kumar, G., Bederson, B., and Shneiderman,
B. Domain name based visualization of web histories in
a zoomable user interface. In Database and Expert
Systems Applications, 2000. Proceedings. 11th
International Workshop on, IEEE (2000), 591–598.

12. Kumar, H. P., Plaisant, C., and Shneiderman, B.
Browsing hierarchical data with multi-level dynamic
queries and pruning.

13. Kumawat, S., and Khunteta, A. A survey on operational
transformation algorithms: Challenges, issues and
achievements. International Journal of Computer
Applications 3, 12 (2010).

14. Modjeska, D. K. Hierarchical data visualization in
desktop virtual reality. PhD thesis, University of
Toronto, 2000.

15. Nichols, D. A., Curtis, P., Dixon, M., and Lamping, J.
High-latency, low-bandwidth windowing in the jupiter
collaboration system. In Proceedings of the 8th annual
ACM symposium on User interface and software
technology, ACM (1995), 111–120.

16. Plaisant, C., Grosjean, J., and Bederson, B. B.
Spacetree: Supporting exploration in large node link
tree, design evolution and empirical evaluation. In
Information Visualization, 2002. INFOVIS 2002. IEEE
Symposium on, IEEE (2002), 57–64.

17. Pook, S., Lecolinet, E., Vaysseix, G., and Barillot, E.
Context and interaction in zoomable user interfaces. In
Proceedings of the working conference on Advanced
visual interfaces, ACM (2000), 227–231.

18. Prakash, A., and Knister, M. J. A framework for undoing
actions in collaborative systems. ACM Transactions on
Computer-Human Interaction (TOCHI) 1, 4 (1994),
295–330.

19. Ribó, J. M., and Franch, X. A multi-version algorithm
for cooperative edition of hierarchically-structured
documents. In Groupware, 2001. Proceedings. Seventh
International Workshop on, IEEE (2001), 154–163.

20. Roseman, M., and Greenberg, S. Teamrooms: network
places for collaboration. In Proceedings of the 1996
ACM conference on Computer supported cooperative
work, ACM (1996), 325–333.

21. Stern, J. The best to-do list-apps: Remember the milk,
astrid, and wunderlist compared, 2012.

22. Streitz, N. A., Geißler, J., Haake, J. M., and Hol, J.
Dolphin: integrated meeting support across local and
remote desktop environments and liveboards. In
Proceedings of the 1994 ACM conference on Computer
supported cooperative work, ACM (1994), 345–358.

23. Sun, D., and Sun, C. Context-based operational
transformation in distributed collaborative editing
systems. Parallel and Distributed Systems, IEEE
Transactions on 20, 10 (2009), 1454–1470.

24. Zaphiris, P., Shneiderman, B., and Norman, K. L.
Expandable indexes vs. sequential menus for searching
hierarchies on the world wide web. Behaviour &
Information Technology 21, 3 (2002), 201–207.

	Introduction and Motivation
	Hierarchical Abstraction
	Real-Time Synchronization
	Anatomy of a Project Collaboration Application

	Background
	Commercial Efforts
	Remember The Milk (RTM)
	Basecamp
	Asana
	Google Docs

	Research Efforts
	TeamRoom
	DOLPHIN
	Google Wave

	Symp.ly
	Symp.ly Application Architecture
	Nestable Data Structure and The User Interface
	Hierarchical Data Structure
	Collapsable Items
	Zoomable Items

	Research Efforts in Real-Time Collaborative Technology
	Concurrency Control
	Operation Transform
	Jupiter Collaboration System
	Share.js

	Real-Time Interface in Symp.ly
	OT Control Algorithm
	Textual OT Operations
	xform Algorithm for Text
	Structural OT Operations
	xform Algorithm for Structure

	Sharing and Collaboration

	Empirical Results
	Discussion and Conclusion
	REFERENCES

